
Playground Environments
with k8s

Xavier Orduña

DEVOPS Barcelona Meetup

March 2024

About me

• I learned to code in the last centry (Visual Basic and HTML)

• Computer Science and Engineering at UPC

• Founded DEXMA (2007 – 2015)

• Data Engineering Freelance (TESCO, ABI, Moonpay, …) (2015 – 2021)

• Team Lead at Circutor (2021 – present)

• And still freelancing for some companies …

OBSESSED ABOUT AUTOMATION!!!!

What is a Playground environment*?

• A Preview environment

• For each MR / PR

• With its own frontend

• With its own backend

• With its own database

• That is destroyed at merge

* Otherwise named feature environments

DEMO

Why?

• Quick product reviews

• Easy way to run isolated end 2 end tests

• Load tests

• Team colaboration

Advantages

• Quicker functional review times

• Enables developer to see how the whole system work, not only the
service they are implemeting

• Frontend do not need to provision Backend

• Backend do not need to provision Frontend

• They can be used for many things (debugging, load testing, mobile,
hardware integration)

Disadvantages

• They are memory hungry!!! its a whole system

• Developers rely too much on them, this leads to higher build times

• Its a “delighter” that defines your whole architecture

• Cost (K8S, …)

Recipe

• K8S Cluster

• Helm

• Gitlab “monorepo”

• And lots, lots of refinement …

Be carefull, some actions in this presentations require a lot of “faith” and involve some kind
of goat sacrifices. Those moments are marked with this icon.

Example application

API

JOB

Ingress LB HTTP

FTP & MQTT
LB TCP

Playground architecture

Ingress Load
Balancer

play-23.p.your-domain.com

H
o

st
 b

as
ed

 r
o

ut
in

g

play-25.p.your-domain.com

play-27.p.your-domain.com

play-29.p.your-domain.com

FTP & MQTT

Some examples

Deploy a playground step by step

Build Docker images

Define variables

Setup database

Prepare tags

Install helm

Run end2end

Destroy

Build Docker image:

TAG: <branch_name>_<commit_hash>

When main_<commit_hash> has been deployed succesfully tag it as
stable

It is very important that all parameters are passed as environment
variables to be setup at RUNTIME

Deploy a playground step by step

Build Docker images

Define variables

Setup database

Prepare tags

Install helm

Run end2end

Destroy

PLAYGROUND_ENV=play-${CI_COMMIT_REF_SLUG:0:25}

BRANCH_DATABASE=`echo "$PLAYGROUND_ENV" | tr - _`

POSTGRES_URI=$PLAYGROUND_PG/$BRANCH_DATABASE

REDIS_URI=$DEV_REDIS/${CI_COMMIT_REF_SLUG%%-*}

BRANCH_HOSTNAME=$PLAYGROUND_ENV.p.mycircutor.com

DYNAMIC_ENVIRONMENT_URL=https://$BRANCH_HOSTNAME

DEV_POSTGRES=<postgresq://user:pass@hostname>

DEV_REDIS=<redis://server>

CI_COMMIT_REF_SLUG // GITHUB_REF_NAME

Existing variables (CI/CD)

Pipeline defined variables

Deploy a playground step by step

Build Docker images

Define variables

Setup database

Prepare tags

Install helm

Run end2end

Destroy

$ echo "SELECT 'CREATE DATABASE $BRANCH_DATABASE' WHERE NOT EXISTS (SELECT FROM

 pg_database WHERE datname = '$BRANCH_DATABASE')\gexec" | psql

$PLAYGROUND_PG

$ goose postgres up GOOSE_DBSTRING=$POSTGRES_URI

https://pressly.github.io/goose/

$ make upload-test-data DB_URI=$POSTGRES_URI

Deploy a playground step by step

Build Docker images

Define variables

Setup database

Prepare tags

Install helm

Run end2end

Destroy

default-values.yaml

playground-values.yaml

deploy.tag-values.yaml

Build api

Build front

Build job

Helm
values

P
re

ce
d

en
ce

Combine using yq

Deploy a playground step by step

Build Docker images

Define variables

Setup database

Prepare tags

Install helm

Run end2end

Destroy

$ helm upgrade --install $PLAYGROUND_ENV deployment/k8s/chart

 -f deployment/k8s/chart/values.yaml

 -f deployment/k8s/environments/playground-values.yaml

 -f deploy.tag-values.yaml

 --set global.hostname=$BRANCH_HOSTNAME

 --set global.environment=$PLAYGROUND_ENV

 --set global.baseUrl=$DYNAMIC_ENVIRONMENT_URL

 --set db.uri=$POSTGRES_URI

 --set redis.uri=$REDIS_URI

 --description "Deploy $buildVersion to $updatedTags"

 --debug --wait

Deploy a playground step by step

Build Docker images

Define variables

Setup database

Prepare tags

Install helm

Run end2end

Destroy

Cypress runs all end2end tests in a clean environment each time

Deploy a playground step by step

Build Docker images

Define variables

Setup database

Prepare tags

Install helm

Run end2end

Destroy

#!/bin/bash

regex="Merge branch '([A-Za-z0-9-]+)' into '([A-Za-z0-9-]+)'"

if [[$CI_COMMIT_TITLE =~ $regex]]; then

 echo ${BASH_REMATCH[1]} "->" ${BASH_REMATCH[2]}

 PLAYGROUND_ENV=${BASH_REMATCH[1]:0:25}

 if [["$PLAYGROUND_ENV" == *-]]; then PLAYGROUND_ENV=${PLAYGROUND_ENV::-1}; fi

 export BRANCH_DATABASE=play_`echo "$PLAYGROUND_ENV" | tr - _`

 if helm list -n playground | grep play-$PLAYGROUND_ENV; then

 echo "Uninstalling playground-$PLAYGROUND_ENV"

 helm uninstall play-$PLAYGROUND_ENV -n playground

 # delete database ...

 echo "Deleting database"

 envsubst < deployment/scripts/delete-branch-database.sql > delete-database.sql

 cat delete-database.sql

 cat delete-database.sql | psql $PLAYGROUND_PG

 echo "Environment completely removed"

 else

 echo "No playground-$PLAYGROUND_ENV found"

 fi

else

 echo "No branch found in commit title"

fi

This complex script failed very often, so we ended up with a daily
cleaning script looking for environments where the issue is closed

Tips and tricks - ID

• It is very important to define an ID for the environment (in our case is
the issue ID)

• The ID number is used as database number in REDIS

• We use the first 25 characters of the issue for simplicity

Tips and tricks - Email

• We use postmark sandboxes to send email in playgrounds.

• All mails have metadata with the environment

• A custom email viewer (only for playgrounds) lets developer to see all
mails.

Tips and Tricks – Environment Variables

• All program variables should be defined at RUNTIME (not at build)

• Easy for Python, Go, ….

• Not so easy for Angular, React, NextJS, …

CMD ["/bin/sh", "-c", "envsubst <

/usr/share/nginx/html/assets/env.template.js >

/usr/share/nginx/html/assets/env.js && exec nginx -g

'daemon off;'"]

Tips and Tricks - Domains

Cluster

Public
LoadBalancer

Private
LoadBalancer

• Playgrounds are only accesible via VPN

• Dev cluster has public and private LB

• And public and private ingress

• First we had *.p.mycircutor.com pointed to private
LB

• Now certs and domains are managed automatically
with Lets Encrypt, Cloudflare DNS and Nginx
Ingress. And we can expose playgrounds temporary
to the internet

Tips and Tricks - Database

• Keep in mind that each playground can have a lot of connections to a
DB

• Use a database only for playgrounds

• Use ID as DB num in Redis

• Use schema migration tools as goose

• Create a small subset of data that is loaded on each Playground

• We have a job to copy a snapshot of production database into a
playground.

Tips and Tricks - Cost

• Keep memory and CPU requests very low since most of playgrounds
will be iddle

• Add a “cleanup” job that is executed daily and looks for closed issues
with still a playground

• Only for HTTP Services

• Our current memory footprint is ~ 240Mb

Tips and Tricks – TCP based services

• TCP services cannot be routed using “hostname” like HTTP

• Right now we need to create a load balancer for each TCP services
exposed.

• Trick: we expose the TCP service depending on a flag: exposeMQTT
which by default is false.

• Trick: use Kong Ingress and SNI header based routing:
https://docs.konghq.com/kubernetes-ingress-
controller/latest/guides/services/tcp/

Tips and Tricks - RabbitMQ

• We want to use RabbitMQ with STOMP plugin and custom Auth API

• RabbitMQ supports virtual hosts but only a single Authentication
endpoint

• This is an example of how playgrounds impact your arquitecture

play-181-…

play-234-…

play-245-…

Reverse proxy based on query parameter

Thank you so much!

xavier.orduna@gmail.com

	Slide 1: Playground Environments with k8s
	Slide 2: About me
	Slide 3: What is a Playground environment*?
	Slide 4: DEMO
	Slide 5: Why?
	Slide 6: Advantages
	Slide 7: Disadvantages
	Slide 8: Recipe
	Slide 9: Example application
	Slide 10: Playground architecture
	Slide 11: Some examples
	Slide 12: Deploy a playground step by step
	Slide 13: Deploy a playground step by step
	Slide 14: Deploy a playground step by step
	Slide 15: Deploy a playground step by step
	Slide 16: Deploy a playground step by step
	Slide 17: Deploy a playground step by step
	Slide 18: Deploy a playground step by step
	Slide 19: Tips and tricks - ID
	Slide 20: Tips and tricks - Email
	Slide 21: Tips and Tricks – Environment Variables
	Slide 22: Tips and Tricks - Domains
	Slide 23: Tips and Tricks - Database
	Slide 24: Tips and Tricks - Cost
	Slide 25: Tips and Tricks – TCP based services
	Slide 26: Tips and Tricks - RabbitMQ
	Slide 27: Thank you so much!

